JORR

The Journal of Orthopedics Research and Rehabilitation welcomes scholarly papers inorthopaedic surgery, physical therapy and rehabilitation, neurosurgery, neurology and clinic anesthesiology and reanimation.

EndNote Style
Index
Review
Sarcopenia
Sarcopenia is the progressive and involuntary loss of muscle mass and strength that occurs with elderly age. The definition of sarcopenia was first made by Rosenberg et al. in 1989. In 2010, the European Working Group on Sarcopenia in Older People (EWGSOP1) characterised the condition primarily by low muscle mass. The definition of sarcopenia that has been most widely adopted is that proposed by the EWGSOP1, which was updated in 2019 to become the EWGSOP2. Acute and chronic sarcopenia was included in the EWGSOP2 guideline for the first time. Although there is no consensus on the exact aetiology of sarcopenia, it is widely accepted that the condition is related to the natural ageing process. There are many chronic diseases associated with sarcopenia, including: cancer, chronic obstructive pulmonary disease (COPD), chronic heart failure, parkinson, cognitive impairment, depression, chronic kidney disease, diabetes mellitus (DM), human immunodeficiency virus (HIV), anorexia and osteoporosis. The assessment of sarcopenia includes a variety of methods and screening tools that are easily accessible and practical. The EWGSOP2 algorithm is delineated as "find–assess–confirm–severity," or F-A-C-S. A multidisciplinary approach is imperative for the early diagnosis and treatment of this condition. Given the multifactorial pathogenesis of sarcopenia, no definitive pharmacological therapy currently exists. Enhanced patient education and adherence to clinical recommendations are pivotal. The most effective strategies for combating sarcopenia involve a combination of nutritional support and resistance–aerobic exercise programs. Further research is needed to explore new pharmacological treatment approaches.


1. Benz E, Pinel A, Guillet C, et al. Sarcopenia and sarcopenic obesity and mortality among older people. JAMA Netw Open. 2024;7(3):e243604. doi:10.1001/jamanetworkopen.2024.3604
2. Nair KS. Age-related changes in muscle.Mayo Clin Proc. 2000;75 Suppl: S14-S18.
3. Shachar SS, Williams GR, Muss HB, Nishijima TF. Prognostic value of sarcopenia in adults with solid tumours: a meta-analysis and systematic review. Eur J Cancer. 2016;57:58-67. doi:10.1016/j.ejca.2015.12.030
4. Shu X, Lin T, Wang H, et al. Diagnosis, prevalence, and mortality of sarcopenia in dialysis patients: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2022;13(1):145-158. doi:10.1002/jcsm.12890
5. Tantai X, Liu Y, Yeo YH, et al. Effect of sarcopenia on survival in patients with cirrhosis: a meta-analysis. J Hepatol. 2022;76(3):588-599. doi:10.1016/j.jhep.2021.11.006
6. Feng L, Gao Q, Hu K, et al. Prevalence and risk factors of sarcopenia in patients with diabetes: a meta-analysis. J Clin Endocrinol Metab. 2022; 107(5):1470-1483. doi:10.1210/clinem/dgab884
7. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997; 127(5 Suppl):990S-991S. doi:10.1093/jn/127.5.990S
8. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing. 2010;39(4):412-423. doi:10.1093/ageing/afq034
9. Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12(4):249-256. doi:10.1016/j.jamda.2011.01.003
10. Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014;69(5):547-558. doi:10.1093/gerona/glu010
11. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. doi:10.1093/ageing/afy169
12. Evans WJ, Campbell WW. Sarcopenia and age-related changes in body composition and functional capacity. J Nutr. 1993;123(2 Suppl):465-468. doi:10.1093/jn/123.suppl_2.465
13. Kwon YN, Yoon SS. Sarcopenia: neurological point of view. J Bone Metab. 2017;24(2):83-89. doi:10.11005/jbm.2017.24.2.83
14. Shin MJ, Jeon YK, Kim IJ. Testosterone and sarcopenia. World J Mens Health. 2018;36(3):192-198. doi:10.5534/wjmh.180001
15. Barazzoni R, Bischoff SC, Boirie Y, et al. Sarcopenic obesity: time to meet the challenge. Clin Nutr. 2018;37(6 Pt A):1787-1793. doi:10.1016/j.clnu.2018.04.018
16. Srikanthan P, Karlamangla AS. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey. J Clin Endocrinol Metab. 2011;96(9):2898-2903. doi:10.1210/jc.2011-0435
17. Donini LM, Busetto L, Bischoff SC, et al. Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Obes Facts. 2022;15(3):321-335. doi:10.1159/000521241
18. Atkins JL, Wannamathee SG. Sarcopenic obesity in ageing: cardiovascular outcomes and mortality. Br J Nutr. 2020;124(10):1102-1113. doi:10.1017/S0007114520002172
19. Bahat G, Kilic C, Ozkok S, Ozturk S, Karan MA. Associations of sarcopenic obesity versus sarcopenia alone with functionality. Clin Nutr. 2021;40(5):2851-2859. doi:10.1016/j.clnu.2021.04.002
20. Londhe P, Guttridge DC. Inflammation induced loss of skeletal muscle. Bone. 2015;80:131-142. doi:10.1016/j.bone.2015.03.015
21. Kim M, Won CW. Sarcopenia in Korean community-dwelling adults aged 70 years and older: application of screening and diagnostic tools from the Asian Working Group for sarcopenia 2019 update. J Am Med Dir Assoc. 2020;21(6):752-758. doi:10.1016/j.jamda.2020.03.018
22. Wu X, Li X, Xu M, Zhang Z, He L, Li Y. Sarcopenia prevalence and associated factors among older Chinese population: findings from the China health and retirement longitudinal study. PloS One. 2021;16(3): e0247617. doi:10.1371/journal.pone.0247617
23. Wang C, Bai L. Sarcopenia in the elderly: basic and clinical issues. Geriatr Gerontol Int. 2012;12(3):388-396. doi:10.1111/j.1447-0594.2012. 00851.x
24. Granic A, Mendonça N, Sayer AA, et al. Effects of dietary patterns and low protein intake on sarcopenia risk in the very old: the Newcastle 85+ study. Clin Nutr. 2020;39(1):166-173. doi:10.1016/j.clnu.2019.01.009
25. Ponsoni A, Sardeli AV, Costa FP, Mourão LF. Prevalence of sarcopenia in Parkinson’s disease: a systematic review and meta-analysis. Geriatr Nurs. 2023;49:44-49. doi:10.1016/j.gerinurse.2022.11.006
26. Ponsoni A, Sardeli AV, Costa FP, Mourão LF. Prevalence of sarcopenia in Parkinson’s disease: a systematic review and meta-analysis. Geriatr Nurs. 2023;49:44-49. doi:10.1016/j.gerinurse.2022.11.006
27. Gao Q, Hu K, Yan C, et al. Associated factors of sarcopenia in community-dwelling older adults: a systematic review and meta-analysis. Nutrients. 2021;13(12):4291. doi:10.3390/nu13124291
28. Dunne RF, Loh KP, Williams GR, Jatoi A, Mustian KM, Mohile SG. Cachexia and sarcopenia in older adults with cancer: a comprehensive review. Cancers (Basel). 2019;11(12):1861. doi:10.3390/cancers11121861
29. Kim SH, Shin MJ, Shin YB, Kim KU. Sarcopenia Associated with chronic obstructive pulmonary disease. J Bone Metab. 2019;26(2):65-74. doi:10.11005/jbm.2019.26.2.65
30. Friedman PJ, Campbell AJ, Caradoc-Davies TH. Prospective trial of a new diagnostic criterion for severe wasting malnutrition in the elderly. Age Ageing. 1985;14(3):149-154. doi:10.1093/ageing/14.3.149
31. Hong SH, Bae YJ. Association between alcohol consumption and the risk of sarcopenia: a systematic review and meta-analysis. Nutrients. 2022;14(16):3266. doi:10.3390/nu14163266
32. Pourmotabbed A, Ghaedi E, Babaei A, et al. Sleep duration and sarcopenia risk: a systematic review and dose-response meta-analysis. Sleep Breath. 2020;24(4):1267-1278. doi:10.1007/s11325-019-01965-6
33. Malmstrom TK, Miller DK, Simonsick EM, Ferrucci L, Morley JE. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle. 2016;7(1):28-36. doi:10.1002/jcsm.12048
34. Yang M, Hu X, Xie L, et al. Comparing mini sarcopenia risk assessment with SARC-F for screening sarcopenia in community-dwelling older adults. J Am Med Dir Assoc. 2019;20(1):53-57. doi:10.1016/j.jamda.2018. 04.012
35. Ida S, Kaneko R, Murata K. SARC-F for Screening of sarcopenia among older adults: a meta-analysis of screening test accuracy. J Am Med Dir Assoc. 2018;19(8):685-689. doi:10.1016/j.jamda.2018.04.001
36. Bahat G, Yilmaz O, Oren MM, et al. Cross-cultural adaptation and validation of the SARC-F to assess sarcopenia: methodological report from European Union Geriatric Medicine Society Sarcopenia Special Interest Group. Eur Geriatr Med. 2018;9(1):23-28. doi:10.1007/s41999-017-0003-5
37. Beaudart C, McCloskey E, Bruyère O, et al. Sarcopenia in daily practice: assessment and management. BMC Geriatr. 2016;16(1):170. doi:10.1186/s12877-016-0349-4
38. Ibrahim K, May C, Patel HP, Baxter M, Sayer AA, Roberts H. A feasibility study of implementing grip strength measurement into routine hospital practice (GRImP): study protocol. Pilot Feasibility Stud. 2016;2:27. doi:10.1186/s40814-016-0067-x
39. Sipers WM, Verdijk LB, Sipers SJ, Schols JM, van Loon LJ. The Martin vigorimeter represents a reliable and more practical tool than the jamar dynamometer to assess handgrip strength in the geriatric patient. J Am Med Dir Assoc. 2016;17(5):466.e1-466.e4667. doi:10.1016/j.jamda.2016. 02.026
40. Francis P, Toomey C, Mc Cormack W, Lyons M, Jakeman P. Measurement of maximal isometric torque and muscle quality of the knee extensors and flexors in healthy 50- to 70-year-old women. Clin Physiol Funct Imaging. 2017;37(4):448-455. doi:10.1111/cpf.12332
41. Cesari M, Kritchevsky SB, Newman AB, et al. Added value of physical performance measures in predicting adverse health-related events: results from the health, aging and body composition study.J Am Geriatr Soc. 2009;57(2):251-259. doi:10.1111/j.1532-5415.2008.02126.x
42. Cooper C, Fielding R, Visser M, et al. Tools in the assessment of sarcopenia. Calcif Tissue Int. 2013;93(3):201-210. doi:10.1007/s00223-013-9757-z
43. Gould H, Brennan SL, Kotowicz MA, Nicholson GC, Pasco JA. Total and appendicular lean mass reference ranges for Australian men and women: the Geelong osteoporosis study. Calcif Tissue Int. 2014;94(4): 363-372. doi:10.1007/s00223-013-9830-7
44. Maden-Wilkinson TM, Degens H, Jones DA, McPhee JS. Comparison of MRI and DXA to measure muscle size and age-related atrophy in thigh muscles. J Musculoskelet Neuronal Interact. 2013;13(3):320-328.
45. Messina C, Maffi G, Vitale JA, Ulivieri FM, Guglielmi G, Sconfienza LM. Diagnostic imaging of osteoporosis and sarcopenia: a narrative review. Quant Imaging Med Surg. 2018;8(1):86-99. doi:10.21037/qims. 2018.01.01
46. Kim KM, Jang HC, Lim S. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. Korean J Intern Med. 2016;31(4):643-650. doi:10.3904/kjim.2016.015
47. Gonzalez MC, Heymsfield SB. Bioelectrical impedance analysis for diagnosing sarcopenia and cachexia: what are we really estimating? J Cachexia Sarcopenia Muscle. 2017;8(2):187-189. doi:10.1002/jcsm.12159
48. Abellan van Kan G, Rolland Y, Andrieu S, et al. Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) task force. J Nutr Health Aging. 2009;13(10):881-889. doi:10.1007/s12603-009-0246-z
49. Pavasini R, Guralnik J, Brown JC, et al. Short physical performance battery and all-cause mortality: systematic review and meta-analysis. BMC Med. 2016;14(1):215. doi:10.1186/s12916-016-0763-7
50. Bischoff HA, Stähelin HB, Monsch AU, et al. Identifying a cut-off point for normal mobility: a comparison of the timed ‘up and go’ test in community-dwelling and institutionalised elderly women. Age Ageing. 2003;32(3):315-320. doi:10.1093/ageing/32.3.315
51. Newman AB, Simonsick EM, Naydeck BL, et al. Association of long-distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability. JAMA. 2006;295(17):2018-2026. doi:10.1001/jama.295.17.2018
52. Fearon K, Strasser F, Anker SD, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5): 489-495. doi:10.1016/S1470-2045(10)70218-7
53. Perkisas S, Baudry S, Bauer J, et al. Application of ultrasound for muscle assessment in sarcopenia: towards standardized measurements. Eur Geriatr Med. 2018;9(6):739-757. doi:10.1007/s41999-018-0104-9
54. Galindo Martín CA, Monares Zepeda E, Lescas Méndez OA. Bedside ultrasound measurement of rectus femoris: a tutorial for the nutrition support clinician. J Nutr Metab. 2017;2017:2767232. doi:10.1155/2017/ 2767232
55. Shankaran M, Czerwieniec G, Fessler C, et al. Dilution of oral D3-creatine to measure creatine pool size and estimate skeletal muscle mass: development of a correction algorithm. J Cachexia Sarcopenia Muscle. 2018;9(3):540-546. doi:10.1002/jcsm.12278
56. Beaudart C, Locquet M, Reginster JY, Delandsheere L, Petermans J, Bruyère O. Quality of life in sarcopenia measured with the SarQoL®: impact of the use of different diagnosis definitions. Aging Clin Exp Res. 2018;30(4):307-313. doi:10.1007/s40520-017-0866-9
57. Inceoglu SC, Ayyildiz A, Sahin T, et al. The impact of combination of aerobic and resistive exercise on activities of daily living and risk of fall in osteosarcopenic patients. Sisli Etfal Hastan Tip Bul. 2024;58(1):68-74. doi:10.14744/SEMB.2024.56898
58. Chen N, He X, Feng Y, Ainsworth BE, Liu Y. Effects of resistance training in healthy older people with sarcopenia: a systematic review and meta-analysis of randomized controlled trials. Eur Rev Aging Phys Act. 2021;18(1):23. doi:10.1186/s11556-021-00277-7
59. Cannataro R, Cione E, Bonilla DA, Cerullo G, Angelini F, D’Antona G. Strength training in elderly: an useful tool against sarcopenia. Front Sports Act Living. 2022;4:950949. doi:10.3389/fspor.2022.950949
60. Negm AM, Lee J, Hamidian R, Jones CA, Khadaroo RG. Management of sarcopenia: a network meta-analysis of randomized controlled trials. J Am Med Dir Assoc. 2022;23(5):707-714. doi:10.1016/j.jamda.2022.01.057
61. Cruz-Jentoft AJ, Landi F, Schneider SM, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014;43(6):748-759. doi:10.1093/ageing/afu115
62. Robinson SM, Reginster JY, Rizzoli R, et al. Does nutrition play a role in the prevention and management of sarcopenia? Clin Nutr. 2018;37(4): 1121-1132. doi:10.1016/j.clnu.2017.08.016
63. Beaudart C, Dawson A, Shaw SC, et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int. 2017;28(6):1817-1833. doi:10.1007/s00198-017-3980-9
64. Smith C, Sim M, Dalla Via J, Levinger I, Duque G. The interconnection between muscle and bone: a common clinical management pathway. Calcif Tissue Int. 2024;114(1):24-37. doi:10.1007/s00223-023-01146-4
65. Tu DY, Kao FM, Tsai ST, Tung TH. Sarcopenia among the elderly population: a systematic review and meta-analysis of randomized controlled trials. Healthcare (Basel). 2021;9(6):650. doi:10.3390/healthcare 9060650
66. Bird JK, Troesch B, Warnke I, Calder PC. The effect of long chain omega-3 polyunsaturated fatty acids on muscle mass and function in sarcopenia: a scoping systematic review and meta-analysis. Clin Nutr ESPEN. 2021;46:73-86. doi:10.1016/j.clnesp.2021.10.011
67. Hayman O, Combet E, Witard OC, Gray SR. Long-chain n-3 polyunsaturated fatty acid supplementation and neuromuscular function in older adults. Curr Opin Clin Nutr Metab Care. 2024;27(6): 486-491. doi:10.1097/MCO.0000000000001065
68. Su H, Zhou H, Gong Y, et al. The effects of β-hydroxy-β-methylbutyrate or HMB-rich nutritional supplements on sarcopenia patients: a systematic review and meta-analysis. Front Med (Lausanne). 2024;11: 1348212. doi:10.3389/fmed.2024.1348212
69. Wu SH, Chen KL, Hsu C, et al. Creatine supplementation for muscle growth: a scoping review of randomized clinical trials from 2012 to 2021. Nutrients. 2022;14(6):1255. doi:10.3390/nu14061255
70. Song Q, Zhu Y, Liu X, et al. Changes in the gut microbiota of patients with sarcopenia based on 16S rRNA gene sequencing: a systematic review and meta-analysis. Front Nutr. 2024;11:1429242. doi:10.3389/fnut.2024.1429242
71. Giustina A. Vitamin D at the crossroad of prediabetes, sarcopenia, and risk of falls. Lancet Healthy Longev. 2024;5(4):e239-e240. doi:10.1016/S2666-7568(24)00032-1
72. Zhang F, Li W. Vitamin D and sarcopenia in the senior people: a review of mechanisms and comprehensive prevention and treatment strategies. Ther Clin Risk Manag. 2024;20:577-595. doi:10.2147/TCRM.S471191
73. Morley JE. Should frailty be treated with testosterone? Aging Male. 2011;14(1):1-3. doi:10.3109/13685538.2010.502271
74. Rolland Y, Czerwinski S, Abellan Van Kan G, et al. Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging. 2008;12(7):433-50. doi:10.1007/bf02982704
75. Rondanelli M, Miccono A, Peroni G, et al. A systematic review on the effects of botanicals on skeletal muscle health in order to prevent sarcopenia. Evid Based Complement Alternat Med. 2016;2016:5970367. doi:10.1155/2016/5970367
76. Gryson C, Ratel S, Rance M, et al. Four-month course of soluble milk proteins interacts with exercise to improve muscle strength and delay fatigue in elderly participants. J Am Med Dir Assoc. 2014;15(12):958.e1-9. doi:10.1016/j.jamda.2014.09.011
77. Jang J, Park S, Kim Y, et al. Myostatin inhibition-induced increase in muscle mass and strength was amplified by resistance exercise training, and dietary essential amino acids improved muscle quality in mice. Nutrients. 2021;13(5):1508. doi:10.3390/nu13051508
78. Stewart Coats AJ, Ho GF, Prabhash K, et al. Espindolol for the treatment and prevention of cachexia in patients with stage III/IV non-small cell lung cancer or colorectal cancer: a randomized, double-blind, placebo-controlled, international multicentre phase II study (the ACT-ONE trial). J Cachexia Sarcopenia Muscle. 2016;7(3):355-365. doi:10.1002/jcsm.12126
79. Hwee DT, Kennedy A, Ryans J, et al. Fast skeletal muscle troponin activator tirasemtiv increases muscle function and performance in the B6SJL-SOD1G93A ALS mouse model. PLoS One. 2014;9(5):e96921. doi: 10.1371/journal.pone.0096921
80. Bahat G, Ozkok S. The current landscape of pharmacotherapies for sarcopenia. Drugs Aging. 2024;41(2):83-112. doi:10.1007/s40266-023-01093-7
Volume 3, Issue 1, 2025
Page : 20-26
_Footer