1. Galea C, Mcintyre S, Smithers-Sheedy H, et al. Cerebral palsy trends in Australia (1995-2009): a population-based observational study. 2019; 61(2):186-193. doi:10.1111/dmcn.14011
2. PHDA CCM, PHDB HDM, MDC MP, PHDD ACM, MDE AP. Recommendations from the SCPE collaborative group for defining and classifying cerebral palsy.
3. Vitrikas K, Dalton H, Breish DJAfp. Cerebral palsy: an overview. Am Fam Physician. 2020;101(4):213-220.
4. Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8-14.
5. Demont A, Gedda M, Lager C, et al. Evidence-based, implementable motor rehabilitation guidelines for individuals with cerebral palsy. Neurology. 2022;99(7):283-297. doi:10.1212/wnl.0000000000200936
6. Wright PA, Durham S, Ewins DJ, Swain ID. Neuromuscular electrical stimulation for children with cerebral palsy: a review. Arch Dis Child. 2012;97(4):364-371. doi:10.1136/archdischild-2011-300437
7. Chen P, Liu TW, Kwong PWH, et al. Bilateral transcutaneous electrical nerve stimulation improves upper limb motor recovery in stroke: a randomized controlled trial. Stroke. 2022;53(4):1134-1140. doi:10.1161/STROKEAHA.121.036895
8. Tahmasbi F, Ghaderpanah R, Sadrian S, Heris RM, Salehi-Pourmehr HJCPM, Reports R. Effects of transcutaneous electrical nerve stimulation (TENS) on chronic pain in older adults: a systematic review and meta-analysis. Curr Physic Med Rehabil Rep. 2023;11(2):242-253.
9. Tahmasbi F, Mosaddeghi-Heris R, Soleimanzadeh F, et al. Effects of posterior tibial nerve stimulation on fecal incontinence: an umbrella review. Neuromodulation. 2024;27(2):229-242.
10. Tahmasbi F, Hosseini S, Hajebrahimi S, Heris RM, Salehi-Pourmehr H. Efficacy of tibial nerve stimulation in neurogenic lower urinary tract dysfunction among patients with multiple sclerosis: a systematic review and meta-analysis. Urol Res Pract. 2023;49(2):100.
11. Van Dijk KR, Scherder EJ, Scheltens P, Sergeant J. Effects of transcutaneous electrical nerve stimulation (TENS) on non-pain related cognitive and behavioural functioning. Rev Neurosci. 2002;13(3):257-270. doi:10.1515/revneuro.2002.13.3.257
12. Perpetuini D, Russo EF, Cardone D, et al. Use and effectiveness of electrosuit in neurological disorders: a systematic review with clinical implications. Bioengineering (Basel). 2023;10(6):680. doi:10.3390/bioengineering 10060680
13. Pennati GV, Bergling H, Carment L, Borg J, Lindberg PG, Palmcrantz S. Effects of 60 min electrostimulation with the EXOPULSE Mollii Suit on objective signs of spasticity. Front Neurol. 2021;12:706610. doi:10.3389/fneur.2021.706610
14. Arkkukangas M, Hedberg Graff J, Denison E. Evaluation of the electro-dress Mollii® to affect spasticity and motor function in children with cerebral palsy: seven experimental single-case studies with an ABAB design. Cogent Eng. 2022;9(1):2064587. doi:10.1080/23311916.2022.2064587
15. Hedin H, Wong C, Sjödén A. The effects of using an electrodress (Mollii®) to reduce spasticity and enhance functioning in children with cerebral palsy: a pilot study. Eur J Physiother. 2022;24(3):134-143. doi:10. 1080/21679169.2020.1807602
16. Jonasson LL, Sörbo A, Ertzgaard P, Sandsjö L. Patients’ experiences of self-administered electrotherapy for spasticity in stroke and cerebral palsy: a qualitative study. J Rehabil Med. 2022;54:jrm00263. doi:10. 2340/jrm.v53.1131
17. Nordstrom B, Prellwitz M. A pilot study of children and parents experiences of the use of a new assistive device, the electro suit Mollii. Assist Technol. 2021;33(5):238-245. doi:10.1080/10400435.2019.1579267
18. Flodström C, Viklund Axelsson SA, Nordström B. A pilot study of the impact of the electro-suit Mollii® on body functions, activity, and participation in children with cerebral palsy. Assistive Technology. 2022;34(4):411-417. doi:10.1080/10400435.2020.1837288
19. Nordstrom B, Prellwitz MJAT. A pilot study of children and parents experiences of the use of a new assistive device, the electro suit Mollii. Assist Technol. 2021;33(5):238-245. doi:10.1080/10400435.2019.1579267
20. Rubio-Zarapuz A, Apolo-Arenas MD, Clemente-Suárez VJ, et al. Acute effects of a session with the EXOPULSE Mollii Suit in a fibromyalgia patient: a case report. Int J Environ Res Public Health. 2023;20(3):2209. doi:10.3390/ijerph20032209
21. Faul F, Erdfelder E, Lang AG, Buchner A. G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-191. doi:10.3758/bf03193 146
22. Oeffinger D, Bagley A, Rogers S, et al. Outcome tools used for ambulatory children with cerebral palsy: responsiveness and minimum clinically important differences. Develop Med Child Neurol. 2008; 50(12):918-925. doi:10.1111/j.1469-8749.2008.03150.x
23. Beck TW. The importance of a priori sample size estimation in strength and conditioning research. J Strength Condit Res. 2013;27(8):2323-2337. doi:10.1519/JSC.0b013e318278eea0
24. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214-223. doi:10.1111/j.1469-8749.1997.tb07414.x
25. Palisano RJ, Rosenbaum P, Bartlett D, Livingston MH. Content validity of the expanded and revised Gross Motor Function Classification System. Dev Med Child Neurol. 2008;50(10):744-750. doi:10.1111/j.1469-8749.2008.03089.x
26. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth Scale of muscle spasticity. Phys Ther. 1987;67(2):206-207. doi:10.1093/ptj/67.2.206
27. Numanoğlu A, Günel MK. Intraobserver reliability of modified Ashworth Scale and modified Tardieu scale in the assessment of spasticity in children with cerebral palsy. Acta Orthop Traumatol Turc. 2012;46(3):196-200. doi:10.3944/aott.2012.2697
28. Bartlett D, Birmingham T. Validity and reliability of a pediatric reach test. Pediatr Phys Ther. 2003;15(2):84-92. doi:10.1097/01.PEP.0000067 885.63909.5C
29. Duncan PW, Weiner DK, Chandler J, Studenski S. Functional reach: a new clinical measure of balance. J Gerontol. 1990;45(6):M192-M197. doi:10.1093/geronj/45.6.m192
30. Heyrman L, Molenaers G, Desloovere K, et al. A clinical tool to measure trunk control in children with cerebral palsy: the Trunk Control Measurement Scale. Res Dev Disabil. 2011;32(6):2624-2635. doi: 10.1016/j.ridd.2011.06.012
31. Fowler EG, Staudt LA, Greenberg MB, Oppenheim WL. Selective Control Assessment of the Lower Extremity (SCALE): development, validation, and interrater reliability of a clinical tool for patients with cerebral palsy. Dev Med Child Neurol. 2009;51(8):607-614. doi:10.1111/j.1469-8749.2008.03186.x
32. Bakaniene I, Urbonaviciene G, Janaviciute K, Prasauskiene A. Effects of the Inerventions method on gross motor function in children with spastic cerebral palsy. Neurol Neurochir Pol. 2018;52(5):581-586. doi:10. 1016/j.pjnns.2018.07.003
33. Barakat M, Elmeniawy G, Abdelazeim F. Sensory systems processing in children with spastic cerebral palsy: a pilot study. Bullet Fac Physic Ther. 2021;26(1):27. doi:10.1186/s43161-021-00044-w
34. Ng SS, Hui-Chan CW. Does the use of TENS increase the effectiveness of exercise for improving walking after stroke? A randomized controlled clinical trial. Clin Rehabil. 2009;23(12):1093-1103. doi:10. 1177/0269215509342327
35. Cuypers K, Levin O, Thijs H, Swinnen SP, Meesen RL. Long-term TENS treatment improves tactile sensitivity in MS patients.Neurorehabil Neural Repair. 2010;24(5):420-427. doi:10.1177/1545968309356301
36. Ni L, Yao Z, Zhao Y, et al. Electrical stimulation therapy for peripheral nerve injury. Front Neurol. 2023;14:1081458. doi:10.3389/fneur.2023. 1081458
37. Alenazy M, Daneshgar Asl S, Petrigna L, et al. Treatment with electrical stimulation of sensory nerves improves motor function and disability status in persons with multiple sclerosis: a pilot study.J Electromyogr Kinesiol. 2021;61:102607. doi:10.1016/j.jelekin.2021.102607
38. Garcia MAC, Vargas CD. Is somatosensory electrical stimulation effective in relieving spasticity? A systematic review.J Musculoskelet Neuronal Interact. 2019;19(3):317-325.
39. Ertzgaard P, Alwin J, Sörbo A, Lindgren M, Sandsjö L. Evaluation of a self-administered transcutaneous electrical stimulation concept for the treatment of spasticity: a randomized placebo-controlled trial. Eur J Phys Rehabil Med. 2018;54(4):507-517. doi:10.23736/S1973-9087. 17.04791-8
40. Fernández-Tenorio E, Serrano-Muñoz D, Avendaño-Coy J, Gómez-Soriano J. Transcutaneous electrical nerve stimulation for spasticity: a systematic review. Neurologia (Engl Ed). 2019;34(7):451-460. doi:10. 1016/j.nrl.2016.06.009
41. Andringa A, van Wegen E, van de Port I, Kwakkel G, Meskers C. Measurement properties of the neuroflexor device for quantifying neural and non-neural components of wrist hyper-resistance in chronic stroke. Front Neurol. 2019;10:730. doi:10.3389/fneur.2019.00730
42. Sunnerhagen KS, Olver J, Francisco GE. Assessing and treating functional impairment in poststroke spasticity. Neurology. 2013;80 (3 Suppl 2):S35-S44. doi:10.1212/WNL.0b013e3182764aa2
43. Naro A, Leo A, Russo M, et al. Breakthroughs in the spasticity management: are non-pharmacological treatments the future? J Clin Neurosci. 2017;39:16-27. doi:10.1016/j.jocn.2017.02.044
44. Mills PB, Dossa F. Transcutaneous electrical nerve stimulation for management of limb spasticity: a systematic review. Am J Phys Med Rehabil. 2016;95(4):309-318. doi:10.1097/PHM.0000000000000437
45. de Waroquier-Leroy L, Bleuse S, Serafi R, et al. The functional reach test: strategies, performance and the influence of age. Ann Phys Rehabil Med. 2014;57(6-7):452-464. doi:10.1016/j.rehab.2014.03.003
46. de Graaf-Peters VB, Blauw-Hospers CH, Dirks T, Bakker H, Bos AF, Hadders-Algra M. Development of postural control in typically developing children and children with cerebral palsy: possibilities for intervention? Neurosci Biobehav Rev. 2007;31(8):1191-1200. doi:10.1016/ j.neubiorev.2007.04.008
47. Karthikbabu S, Solomon JM, Manikandan N, Rao BK, Chakrapani M, Nayak A. Role of trunk rehabilitation on trunk control, balance and gait in patients with chronic stroke: a pre-post design. Neurosc Med. 2011;2(2):61-67.
48. Kim HS, Hwang JH, Jeong ST, et al. Effect of muscle activity and Botulinum toxin dilution volume on muscle paralysis. Develop Med Child Neurol. 2003;45(3):200-206. doi:10.1017/s0012162203000380
49. Park J, Seo D, Choi W, Lee S. The effects of exercise with TENS on spasticity, balance, and gait in patients with chronic stroke: a randomized controlled trial. Med Sci Monit. 2014;20:1890-1896. doi:10. 12659/MSM.890926
50. Gravelle DC, Laughton CA, Dhruv NT, et al. Noise-enhanced balance control in older adults. Neuroreport. 2002;13(15):1853-1856. doi:10.1097/ 00001756-200210280-00004
51. Laufer Y, Dickstein R. TENS to the lateral aspect of the knees during stance attenuates postural sway in young adults. Scient World J. 2007; 7:1904-1911. doi:10.1100/tsw.2007.279
52. Lin S, Sun Q, Wang H, Xie G. Influence of transcutaneous electrical nerve stimulation on spasticity, balance, and walking speed in stroke patients: a systematic review and meta-analysis. J Rehabil Med. 2018; 50(1):3-7. doi:10.2340/16501977-2266
53. Sanger TD, Chen D, Delgado MR, Gaebler-Spira D, Hallett M, Mink JW. Definition and classification of negative motor signs in childhood. Pediatrics. 2006;118(5):2159-2167. doi:10.1542/peds.2005-3016
54. Cahill-Rowley K, Rose J. Etiology of impaired selective motor control: emerging evidence and its implications for research and treatment in cerebral palsy. Develop Med Child Neuol. 2014;56(6):522-528. doi:10. 1111/dmcn.12355
55. Ostensjø S, Carlberg EB, Vøllestad NK. Motor impairments in young children with cerebral palsy: relationship to gross motor function and everyday activities. Develop Med Child Neurol. 2004;46(9):580-589. doi: 10.1017/s0012162204000994
56. Voorman JM, Dallmeijer AJ, Knol DL, Lankhorst GJ, Becher JG. Prospective longitudinal study of gross motor function in children with cerebral palsy. Arch Physic Med Rehabil. 2007;88(7):871-876. doi:10. 1016/j.apmr.2007.04.002
57. Rose J. Selective motor control in spastic cerebral palsy. Develop Med Child Neurol. 2009;51(8):578-579. doi:10.1111/j.1469-8749.2009.03401.x
</ol>
<p>